
1

2

TABLE OF CONTENTS

PROJECT DESCRIPTION.. 4

EXECUTIVE SUMMARY..4

REVIEWS...4

SECURITY FINDINGS... 5

C-01. ACCESS CONTROL VIOLATION... 5

M-02. LACK OF LIQUIDATOR BADGE REVOCATION MECHANISM..6

M-03. CENTRALISED PRICE FEED...6

L-01. CREATION OF EMPTY COLLATERALIZED DEBT POSITIONS.. 7

L-02. LACK OF DECIMAL PRECISION HANDLING.. 7

DETAILED SCOPE... 8

APPROACH AND METHODOLOGY.. 9

LIMITATIONS AND USE OF REPORT.. 10

3

PROJECT DESCRIPTION

Root is a decentralised money market protocol operating on the Radix DLT, where lenders and borrowers interact
within an overcollateralized market environment.

It's a non-custodial liquidity protocol enabling users to participate either as depositors or borrowers.

EXECUTIVE SUMMARY

Type DeFi Languages Scrypto/Rust

Methods Architecture Review, Manual Review, Unit Testing, Functional Testing, Automated Review

Documentation https://docs.rootfinance.xyz/

Repository Detailed scope can be found at the end of the document

REVIEWS

Review Date Commit

#1 29/08/2024 4d8ed16

#2 24/09/2024 40ea51d

4

SECURITY FINDINGS

Critical

C-01. ACCESS CONTROL VIOLATION

Description: A critical vulnerability has been identified in the flashloan mechanism of the lending market
system. The current implementation allows for unrestricted burning of `TransientResData` resources, which
could be exploited to avoid repaying flashloans.

This vulnerability could lead to significant financial losses for the lending pool and its depositors. It
undermines the entire flashloan mechanism and poses a severe risk to the stability and trustworthiness of
the lending market.

A test to reproduce the issue has been pushed to the repository:
‘./lending_merket/rests/blueprints/flashloan.rs: test_exploit_flashloan_by_burning_transient()’

Recommendation: Modify the `TransientResData` resource in `resources.rs` to restrict burning. An
example implementation is provided in the audit commit.

5

Severity Critical Impact High Likelihood High

Type Access Control Commit 4d8ed16 Status Fixed

Target ./lending_market/src/lending_market.rs: fn take_batch_flashloan()

High

No high severity issues were found.

Medium

M-02. LACK OF LIQUIDATOR BADGE REVOCATION MECHANISM

Severity
Medium Impact Medium Likelihood Medium

Type Access Control Commit 4d8ed16 Status Mitigated

Target ./lending_market/src/lending_market.rs: fn mint_liquidator_badge()

Description: The `mint_liquidator_badge` function currently allows for the minting of liquidator badges but
lacks a mechanism for revoking them. While the function effectively creates new badges for users, the
inability to revoke badges could present potential risks in scenarios where a user's liquidator rights need to
be revoked, such as in the case of misuse or after a certain time period.

Recommendation: Implement a mechanism to revoke liquidator badges.

This would allow for better control over who holds liquidator privileges and ensure that badges can be
deactivated or reassigned as necessary.

M-03. CENTRALISED PRICE FEED

Severity
Medium Impact High Likelihood Low

Type
Centralization
Risk Commit 4d8ed16 Status Mitigated

Description: The current price feed mechanism relies on a single source of truth, which introduces a
centralization risk.

If this single price feed is compromised or experiences downtime, it could affect the entire system's
functionality.

Recommendation: Implement a more robust, decentralized price feed system.

6

Consider using a combination of multiple price feeds and implementing a median or weighted average
mechanism.

Low

L-01. CREATION OF EMPTY COLLATERALIZED DEBT POSITIONS

Severity
Low Impact Low Likelihood Medium

Type Logic Flaw Commit 4d8ed16 Status Fixed

Target ./lending_market/src/lending_market.rs: fn create_cdp()

Description: A potential issue has been identified in the `create_cdp` function of the lending market
system.

The current implementation allows the creation of a Collateralized Debt Position (CDP)

even when no collateral is provided (i.e., when the `deposits` vector is empty).

Although there is a note in the code indicating that the creation of empty CDPs should be forbidden,

this restriction is not enforced.

Recommendation: Implement a check within the `create_cdp` function to prevent the creation

of a CDP if the `deposits` vector is empty.

If the vector is empty, the function should return an error or halt the process

to ensure that all CDPs have collateral.

L-02. LACK OF DECIMAL PRECISION HANDLING

Severity
Low Impact Low Likelihood Medium

Type
Numeric
Precision Commit 4d8ed16 Status Mitigated

7

Target Throughout the codebase, especially in financial calculations

Description: The project extensively uses the `Decimal` type for financial calculations, but there's no
consistent handling of decimal precision or rounding.

This could lead to small discrepancies in calculations, which may accumulate over time or in high-volume
scenarios.

Recommendation: Implement a standardized approach to decimal precision and rounding throughout the
codebase.

Consider creating helper functions for financial calculations that enforce consistent precision and rounding
rules.

DETAILED SCOPE

Last revision - Commit 4d8ed164b52d58bd688209a0e5ae038428620d98

Full path LOCs

lending_market\src\lending_market.rs 287

lending_market\src\lib.rs 3

lending_market\src\resources.rs 130

lending_market\src\modules\cdp_data.rs 183

lending_market\src\modules\cdp_health_checker.rs 344

lending_market\src\modules\interest_strategy.rs 52

lending_market\src\modules\liquidation_threshold.rs 106

lending_market\src\modules\market_config.rs 32

lending_market\src\modules\mod.rs 9

lending_market\src\modules\operation_status.rs 109

lending_market\src\modules\pool_config.rs 167

lending_market\src\modules\pool_state.rs 118

lending_market\src\modules\utils.rs 33

8

single_resource_pool\src\lib.rs 105

internal_price_feed\src\lib.rs 157

External Documentation

File name SHA3

EXPLAINATION OF ROOT FINANCE MONEY
MARKET.pdf

b35603c0e54f16b75b45fa0a8c29d95aabc241f5f52298
fa8795ca533e82f90f

APPROACH AND METHODOLOGY

To establish a uniform evaluation, we define the following terminology in accordance with the OWASP Risk Rating
Methodology:

Likelihood

indicates the probability of a specific vulnerability being discovered and exploited in real-world
scenarios

Impact

measures the technical loss and business repercussions resulting from a successful attack

Severity

reflects the comprehensive magnitude of the risk, combining both the probability of occurrence
(likelihood) and the extent of potential consequences (impact)

Likelihood and impact are divided into three levels: High (H), Medium (M), and Low (L). The severity of a risk is a
blend of these two factors, leading to its classification into one of four tiers: Critical, High, Medium, or Low.

9

When we identify an issue, our approach may include deploying contracts on our private testnet for validation
through testing. Where necessary, we might also create a Proof of Concept (PoC) to demonstrate potential
exploitability.

In particular, we perform the audit according to the following procedure:

Security Analysis

The process begins with a comprehensive examination of the system to gain a deep
understanding of its internal mechanisms, identifying any irregularities and potential weak spots.

Semantic Consistency Checks

We then manually check the logic of implemented smart contracts and compare with the
description in the white paper.

Advanced DeFi Scrutiny

We further review business logics, examine system operations, and place DeFi-related aspects
under scrutiny to uncover possible pitfalls and/or bugs.

Additional Recommendations: We also provide additional suggestions regarding the coding and development of
smart contracts from the perspective of proven programming practices.

To effectively classify each detected issue, we utilize the Common Weakness Enumeration (CWE-699), a
community-curated catalogue of software weakness types. This helps in precisely defining and organizing software
development weaknesses. While some CWE-699 categories may not directly apply to smart contracts, we adapt
them in our classification process. Furthermore, for issues impacting active protocols, the public report version may
temporarily exclude specific details, which will be fully disclosed once the protocol is updated with the necessary
fixes.

LIMITATIONS AND USE OF REPORT

Security evaluations can't identify all vulnerabilities; a vulnerability-free assessment doesn't equate to a fully secure
system. Nonetheless, code reviews are crucial for uncovering overlooked vulnerabilities and pinpointing areas
needing enhanced security. Typically, applications are either entirely secure against a specific attack or wholly
vulnerable. Some vulnerabilities may impact the whole application, whereas others only affect specific sections.
Therefore, we conduct a thorough source code review to identify all areas requiring attention. Within the timeframe
set by the client, Chain Security strives to detect as many vulnerabilities as possible.

Our analysis was confined to the code sections specified in the engagement letter. We examined if the project
adhered to the given specifications, guided by the outlined threat model and trust assumptions. It's important to note
that due to the inherent limitations of any software development process and product, there is always a risk of
significant undetected errors or malfunctions. Additionally, uncertainties arise from any software or application used
in development, as they too can harbor errors or failures. These factors can influence the system's code, functions,

10

or operation. Our assessment did not cover the underlying third-party infrastructure, introducing additional inherent
risks depending on the accurate functioning of the third-party technology stack. Readers of this report should also
consider that software changes over its life cycle, as well as changes in its operating environment, can lead to
operational behaviors that deviate from the original business specifications.

Check out our collection of articles exploring in-depth security options for your project!
TriWei.io/education

11

http://www.triwei.io/education

